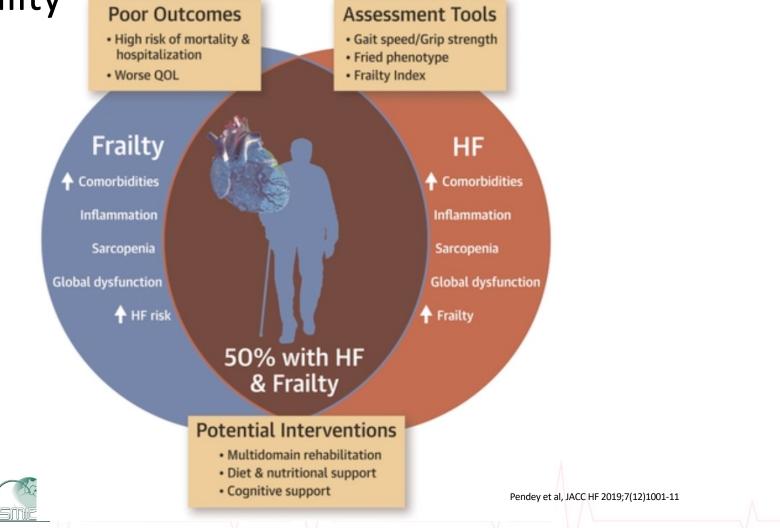


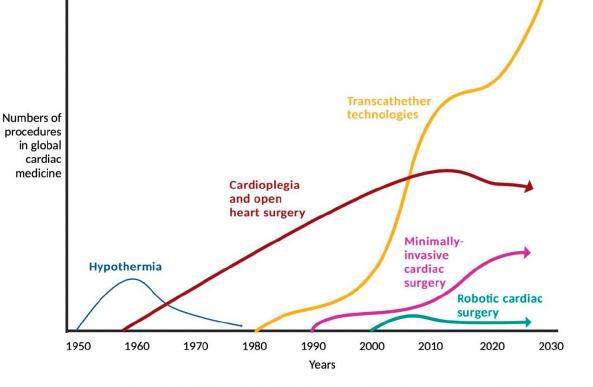
Pro's and Con's of Sternotomy vs Minimally invasive mitral valve surgery

Gry Dahle Md , PhD Oslo University Hospital Oslo, Norway


Mini invasive

The less invasive, the better for the patient, the more painful for the surgeon???

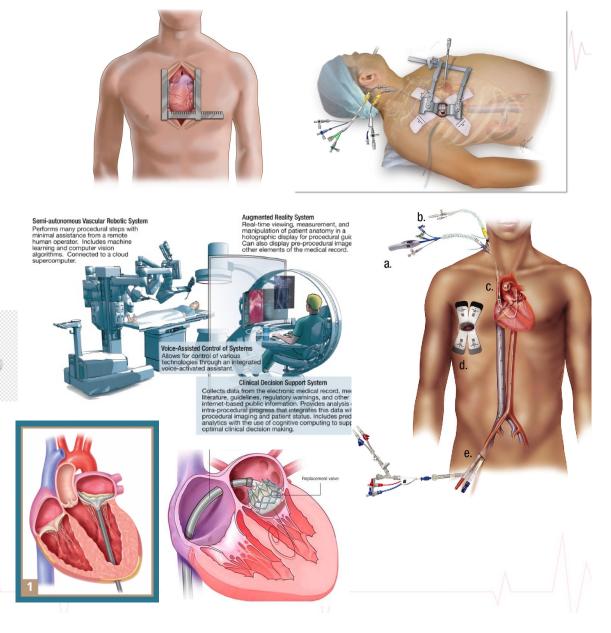
Patient frailty

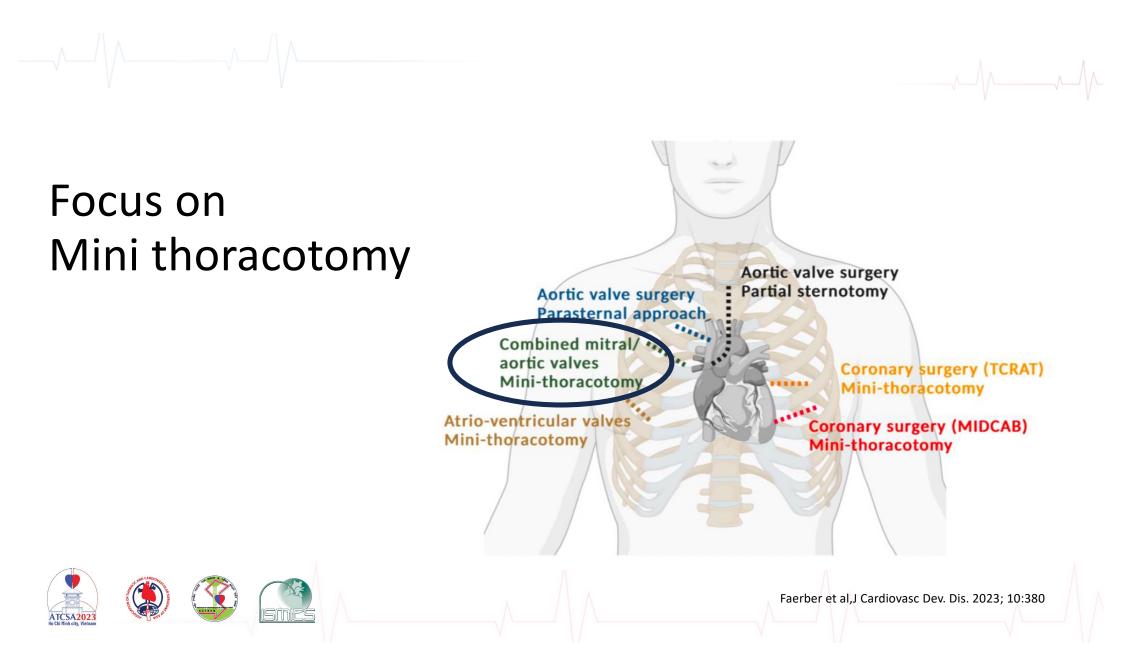

ATCSA2023

Development of invasive treatment of heart disease

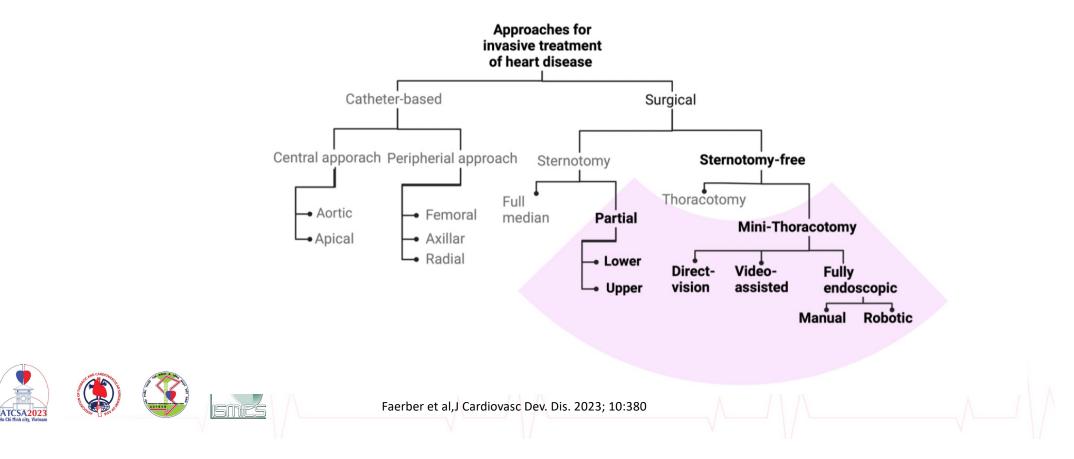
We can personalize and adjust for the specific patient

Figure 4. Simplified illustration of the development of the invasive treatment of heart disease with surgical and interventional means over the last 70 years.

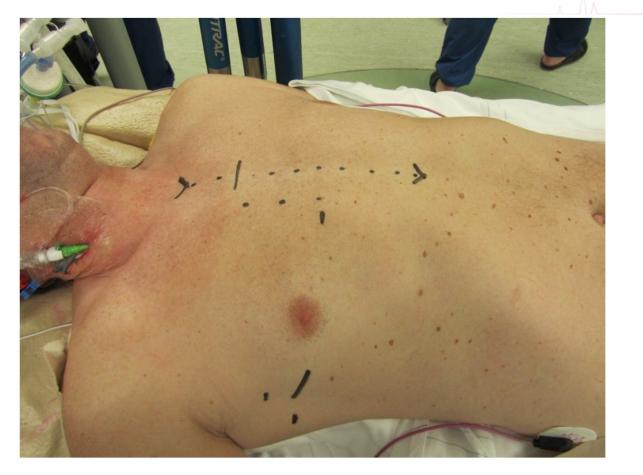

Faerber et al, J Cardiovasc Dev. Dis. 2023; 10:380


Invasiveness

- Open surgery, sternotomy
- Mini invasive, mini thoracotomy
- Endoscopic
- Robotic

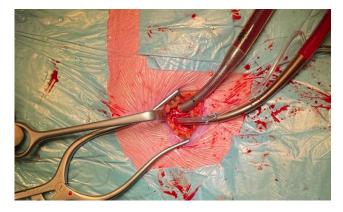

TCSA202

- Transcatheteter, TF or TA
- Medical therapy



Approaches for invasive treatment of heart disease

Planning is crucial


Not all patients are ideal for the minimally invasive access

J. Clin. Med. 2022, 11, 5993. https://doi.org/10.3390/jcm11205993

Limitations of minimally invasive surgery

- Potentially higher stroke rate
- Groin complications after cannulation
- Aortic dissection
- Longer CPB time
- Aortic occlusion
- Demanding technique with longer learning curve
- Limited concomittant surgery
- Some limitation in patient selection

J. Clin. Med. 2022, 11, 5993. https://doi.org/10.3390/jcm11205993

ORIGINAL ARTICLE

European Journal of Cardio-Thoracic Surgery 2023, 64(4), ezad336 https://doi.org/10.1093/ejcts/ezad336 Advance Access publication 9 October 2023

Cite this article as: Cresce GD, Berretta P, Fiore A, Wilbring M, Gerdisch M, Pitsis A et al. Neurological outcomes in minimally invasive mitral valve surgery: risk factors analysis from the Mini-Mitral International Registry. Eur J Cardiothorac Surg 2023; doi:10.1093/ejcts/ezad336.

Neurological outcomes in minimally invasive mitral valve surgery: risk factors analysis from the Mini-Mitral International Registry

Giovanni Domenico Cresce D^{a,*}, Paolo Berretta^b, Antonio Fiore^c, Manuel Wilbring D^d, Marc Gerdisch^e, Antonios Pitsis ⁶, Mauro Rinaldi^g, Nikolaos Bonaros ⁶, Jorg Kempfertⁱ, Tristan Yan ⁶, Frank Van Praet^k, Hoang Dinh Nguyen¹, Carlo Savini^m, Joseph Lamelasⁿ, Tom C. Nguyen^o, Pierluigi Stefano^p, Gloria Färber^q, Loris Salvador^a and Marco Di Eusanio D

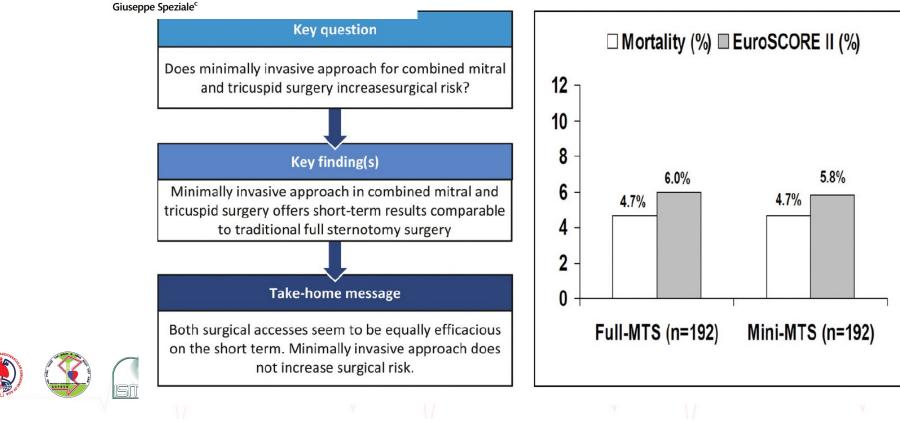
Neurological outcomes in minimally invasive mitral valve surgery: risk factors analysis from the Mini Mitral International Registry (Mini-Mitral-IR)

Actually stroke rate is not high

Summary	Multicentric intenational registry				
A total of 7343 patients undergoing minimally invasive mitral valve surgery from 17 Heart Valve Centers were enrolled. Stroke rate was 1.3%. Age, urgent/emergent status and mitral valve replacement emerged as independent predictors of stroke Preoperative CT-scan affected surgical cannulation strategy and did not led to	▼ 7343 Mini-MVS ↓ Stroke rate 1.3%				
improved neurological outcomes.	Predictors of stroke: Age, Urgent/emergent status, mitral valve replacement				

Legend: Mini-MVS = minimally invasive mitral valve surgery

https://doi.org/10.1093/ejcts/ezac167 Advance Access publication 29 March 2022

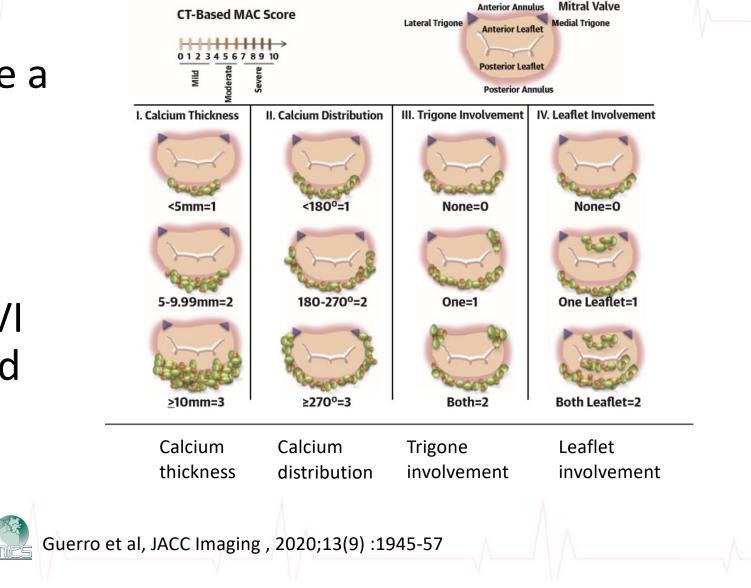

ORIGINAL ARTICLE

Cite this article as: Paparella D, Margari V, Santarpino G, Moscarelli M, Guida P, Fattouch K et al. Comparison of a full sternotomy with a minimally invasive approach for concomitant mitral and tricuspid valve surgery. Eur J Cardiothorac Surg 2022; doi:10.1093/ejcts/ezac167.

Comparison of a full sternotomy with a minimally invasive approach for concomitant mitral and tricuspid valve surgery

Domenico Paparella () ^{a,b,*}, Vito Margari () ^a, Giuseppe Santarpino^c, Marco Moscarelli () ^c, Pietro Guida^d, Khalil Fattouch () ^e, Alberto Albertini () ^f, Luigi Martinelli^g, Elisa Mikus^f, Renato Gregorini^h and Giuseppe Speziale^c

Concomittant procedures



Other may be problematic concomittant procedures

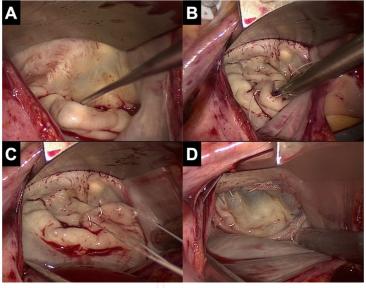
- CABG (in thoracotomy)
- AVR
- AF ablation

MAC may be a problem in minimally invasive approach, though TMVI may be good

Relative contraindications for minimally access

Significant Aortic, Iliac, or Femoral Disease That Prevents Safe Retrograde Arterial Perfusion						
Left ventricular ejection fraction < 25%						
Severe right ventricular dysfunction						
Pulmonary artery pressure > 70 mmHg						
Aorta > 4 cm if endo-aortic balloon being used						
Significant mitral annular calcification						
Patients with more than mild aortic regurgitation						
Kyphoscoliosis and pectus excavatum						
Morbidly obese and extremely muscular patients						
Previous right thoracotomy or expected adhesions in the right chest						
Advanced renal- or liver disease, significant pulmonary disease						

Table derived from Ailawadi et al. 2016 [33].



Benefits of mini invasive access

- Better view of the mitral
- Faster recovery?
- Decreased bleeding and blood product trak
- Less atrial fibrillation
- Less sternal wound infection
- Less scar dissatisfaction
- Reduced ventilation time
- Better in redo-mitral

J. Clin. Med. 2022, 11, 5993. https://doi.org/10.3390/jcm11205993

RMT-randomized trials

íguez-Caulo t al. [28] vic et al. [29] ock et al. [30] n et al. [27] nan et al. [31]	STCVS 2021 JCS 2019 BMJ 2021 ICVTS 2018	Aortic Aortic Aortic Aortic	Sternotomy vs. MICS Sternotomy vs. MICS Sternotomy vs. MICS Sternotomy vs.	100 100 270	Better QOL at 1 year in MIC arm Lower hospital stay in MICS arm Equal transfusions rate	No difference No difference No difference
ock et al. [30] n et al. [27]	BMJ 2021	Aortic	MICS Sternotomy vs. MICS		MICS arm	
n et al. [27]	- 100 - - 100 - 10		MICS	270	Equal transfusions rate	No difference
	ICVTS 2018	Aortic	Sternotomy vs.			
an et al. [31]			MICS	40	Higher postoperative TAPSE in MICS arm	No difference
	NEJM 2011	Mitral	Sternotomy vs. MitraClip	279	Less re-do surgeries and residual MR in surgical arm	No difference
so et al. [22]	Cardiology 2014	Mitral	Sternotomy vs. MICS	160	Longer operative, bypass and cross-clamp times, but shorter ventilation, ICU and in-hospital	No difference
uah et al. [23]	2023	Mitral	Sternotomy vs. MICS	330	stay in MICS and No difference in QOL in 3 months	Lower in MICS
		aerher et a	L Cardiovasc Dev	Dis 2023: 10:380		
		aah et al. [23] 2023	aah et al. [23] 2023 Mitral	aah et al. [23] 2023 Mitral Sternotomy vs. MICS	tablet al [23] 2023 Mitral Sternotomy vs. 330	aah et al. [23] 2023 Mitral Sternotomy vs. MICS 330 Sternotomy vs. in 3 months

ATCSA202

___ /\ __ __ /\ __ __ /\ __

Research

TCSA202

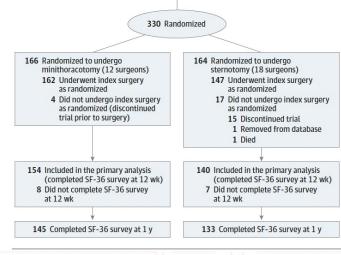
JAMA | Original Investigation

Minithoracotomy vs Conventional Sternotomy for Mitral Valve Repair A Randomized Clinical Trial

Enoch F. Akowuah, MD; Rebecca H. Maier, MSc; Helen C. Hancock, PhD; Ehsan Kharatikoopaei, PhD; Luke Vale, PhD; Cristina Fernandez-Garcia, PhD; Emmanuel Ogundimu, PhD; Janelle Wagnild, PhD; Ayesha Mathias, BSc; Zoe Walmsley, MSc; Nicola Howe, PhD; Adetayo Kasim, PhD; Richard Graham, MBChB; Gavin J. Murphy, MD; Joseph Zacharias, MD; for the UK Mini Mitral Trial Investigators

JAMA. 2023;329(22):1957-1966. doi:10.1001/jama.2023.7800

- Minithoracotomy is not superior to sternotomy in recovery
- Minithoracotomy achieves high quality of valve repair and has similar safety outcomes at one year to sternotomy


improving physical function at 12 weeks than conventional sternotomy mitral valve repair for degenerative mitral regurgitation?

Findings In this randomized clinical trial involving 330 patients, minimally invasive repair was not superior to sternotomy as determined by recovery of physical function at 12 weeks. Both techniques achieved high-quality and durable valve repair at 1 year with similar postoperative complications.

Meaning Minimally invasive mitral valve repair does not improve physical function at 12 weeks compared with sternotomy, but outcomes at 1 year show minimally invasive repair is as safe and effective as sternotomy for degenerative mitral regurgitation. These findings can inform shared decision-making and treatment guidelines.

Figure 1. Patient Selection, Allocation, and Flow in the UK Mini Mitral Trial 1167 Adults with degenerative mitral regurgitation requiring mitral valve repair screened for eligibility 837 Excluded 602 Ineligible 158 Required other cardiac procedures 99 Other mitral valve pathology 94 Comorbidity precluding participation 91 No reason given 73 Previous cardiac surgery 44 Only sternotomy or minithoracotomy indicated 32 Unable to complete trial assessments 8 Approached too close to surgery for baseline assessment 3 Othera Declined participation 88 Strong preference for 1 of the 2 procedures

- 70 No reason given
- 46 Refused randomization
- 14 Refused surgery
- 7 Wanted a specific surgeon
 4 Missed (no available research staff)
- + Missed (no available research star

Table 2. The potential of minimally invasive approaches to provide advantages for the conduct of classic cardiac surgery.

Surgical Scenarios in Which Minimally Invasive Approaches Have Provided Advantages for the Conduct of Classic Cardiac Surgery through Sternotomy (Modified from Doenst and Lamelas [21])

Tricuspid valve: surgery without sternotomy, as a redo without pericardial dissection, with or without cross-clamping Mitral valve: surgery without sternotomy, as a redo (specifically with patent mammary) with or without pericardial dissection, with or without cross-clamping, beating heart/fibrillating heart. Redo cases with previous sternal wound infection (specifically those with loss of sternal bone) Cases with morbid obesity Frail patients with or without significant osteoporosis

Patients with large breast implants

ARTICLE IN PRESS

Asian Journal of Surgery xxx (xxxx) xxx

Review Article

Outcomes of minimally invasive versus conventional sternotomy for redo mitral valve surgery according to Mitral Valve Academic Research Consortium: A systematic review and meta-analysis

Dudy Arman Hanafy^{*}, Stefanie Melisa, Galih Asa Andrianto, Widya Trianita Suwatri, Sugisman

Division of Thoracic, Cardiac, and Vascular Surgery, University of Indonesia, Harapan Kita National Heart Center, Jakarta, Indonesia

	MIN		STE	R		Odds Ratio			Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H, Rando	m, 95% Cl	
Burfeind 2002	1	60	8	155	6.9%	0.31 [0.04, 2.55]	2002	_	•		5
Hiraoka 2013	0	10	2	27	3.1%	0.49 [0.02, 11.00]	2013				
Vallabhajosyula 2015	0	67	3	220	3.4%	0.46 [0.02, 9.02]	2015				
Ghoneim 2016	1	12	1	6	3.5%	0.45 [0.02, 8.83]	2016	_			
Losenno 2016	1	40	6	92	6.6%	0.37 [0.04, 3.16]	2016				
Patel 2019	2	90	2	90	7.8%	1.00 [0.14, 7.26]	2019				
Zhang 2020	1	30	4	50	6.1%	0.40 [0.04, 3.73]	2020	-			
Kwon 2022	12	168	22	218	56.6%	0.69 [0.33, 1.43]	2022			-8	
Monsefi 2022	1	27	4	26	6.0%	0.21 [0.02, 2.03]	2022		•		
Total (95% CI)		504		884	100.0%	0.56 [0.32, 0.97]			•		
Total events	19		52								
Heterogeneity: Tau ² = 0.	Heterogeneity: Tau ² = 0.00; Chi ² = 1.93, df = 8 (P = 0.98); i ² = 0%							0.01	0.1 1	10	100
Test for overall effect: Z = 2.08 (P = 0.04)								0.01		10 Favours STER	100

Fig. 3. Forest plot for reintervention for bleeding between MINI vs STER group.

	MIN		STE		Odds Ratio Odds Ratio			Odds Ratio Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Ghoneim 2016	4	12	1	6	5.0%	2.50 [0.21, 29.25]	2016	
Losenno 2016	1	40	12	92	6.8%	0.17 [0.02, 1.36]	2016	
Zhang 2020	12	30	22	50	23.1%	0.85 [0.34, 2.13]	2020	
Hamandi 2021	22	88	21	88	31.2%	1.06 [0.53, 2.12]	2021	
Monsefi 2022	0	27	1	26	3.0%	0.31 [0.01, 7.94]	2022	
Olsthoorn 2022	17	80	33	80	30.9%	0.38 [0.19, 0.77]	2022	
Total (95% CI)		277		342	100.0%	0.65 [0.37, 1.17]		•
Total events	56		90					
Heterogeneity: Tau ² = 0.15; Chi ² = 7.44, df = 5 (P = 0.19); I ² = 33%							0.01 0.1 1 10 100	
Test for overall effect: Z = 1.44 (P = 0.15)							0.01 0.1 1 10 100 Favors MINI Favors STER	

Fig. 4. Forest plot for acute renal failure between MINI vs STER group.

ATCSA2023

This systematic review and meta-analysis showed good and comparable outcomes of a minimally invasive approach compared to median sternotomy for redo mitral valve surgery. A minimally invasive approach through right mini-thoracotomy showed more favorable outcomes regarding in-hospital mortality, reintervention for bleeding, and acute real failure. For patients undergoing redo mitral valve surgery, a rito median sternotomy. • Minimally invasive approach is more favourable regarding in-hospital mortality, re-intervention for

bleeding and acute renal failure

Summary

- Minimally invasive access is here to stay
- There are many levels of minimally invasiveness
- Patient selection and planning is crucial
- Limitations has to be respected
- Results in minimally invasive mitral surgery are as good as with sternotomy
- For redo mitral surgery minithoracotomy may be better than sternotomy
- Further development to endoscopic and robotic techniques are promising

CENTRAL ILLUSTRATION Assessing the Impact of Transcatheter Edge-to-Edge Mitral Valve Repair on Surgical Mitral Valve Repair Volume and Outcomes

Surgical Mitral Valve Repair (MVr):	Comparator:	Results: Surgery After First Transcatheter Edge to Edge Repair (TEER)
n = 13,959 for Degenerative Mitral Regurgitation (DMR) from the Society of Thoracic Surgeons (STS) registry with Centers for Medicare and Medicaid Services (CMS) linkage for long-term outcomes	Surgery performed before vs after date of institution's first transcatheter mitral valve repair	 No significant change in annual MVr volume Downtrend in higher-risk MVr Improved risk adjusted 30-day mortality Improved risk adjusted 5-year mortality
	Before After n = 6,806 n = 7,153	40 Before After 40 40 Before After 40 40 40 40 40 40 40 40 40 40